Crypto-harmonic oscillator in higher dimensions: classical and quantum aspects

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2008 J. Phys. A: Math. Theor. 41065306
(http://iopscience.iop.org/1751-8121/41/6/065306)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.152
The article was downloaded on 03/06/2010 at 07:25

Please note that terms and conditions apply.

Crypto-harmonic oscillator in higher dimensions: classical and quantum aspects

Subir Ghosh ${ }^{1}$ and Bibhas Ranjan Majhi ${ }^{2}$
${ }^{1}$ Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B T Road, Kolkata-700 108, India
${ }^{2}$ S N Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata-700 098, India
E-mail: subir_ghosh2@rediffmail.com and bibhas@bose.res.in

Received 25 October 2007, in final form 13 December 2007
Published 29 January 2008
Online at stacks.iop.org/JPhysA/41/065306

Abstract

We study complexified harmonic oscillator models in two and three dimensions. Our work is a generalization of the work of Smilga (2007 Preprint 0706.4064 (J. Phys. A: Math. Theor. at press)) who initiated the study of these Cryptogauge invariant models that can be related to $P T$-symmetric models. We show that rotational symmetry in higher spatial dimensions naturally introduces more constraints (in contrast to Smilga (2007 Preprint 0706.4064 (J. Phys. A: Math. Theor. at press)) where one deals with a single constraint) with a much richer constraint structure. Some common as well as distinct features in the study of the same Crypto-oscillator in different dimensions are revealed. We also quantize the two dimensional Crypto-oscillator.

PACS numbers: 03.65.Ca, 03.65.Ge

1. Introduction

It has been known for quite sometime [1] that there are quantum mechanical models with specific complex terms in the Hamiltonian that admit real spectra and unitary evolution. Later the seminal paper of Bender and Boettcher [2] attributed this intriguing and useful property to the combined $P T$ - (parity and time reversal) symmetry of the system and more $P T$-symmetric models were constructed that had the above feature. Subsequently, there has been a lot of activity [3] in the study of different aspects of $P T$-symmetric models. These models are referred as 'Crypto'-Hermitian models by Smilga [4]. In [4] Smilga has also provided an alternative explanation to this behavior (of having real energy eigenvalues for a complex Hamiltonian): Crypto-gauge invariance. However, in an important earlier work by Mostafazadeh [5], it was observed in a general context that the real part of the Hamiltonian can generate the dynamics in a real phase space and that the imaginary part of the Hamiltonian, treated as a constraint, can generate symmetry transformations. The usage of certain class of
coordinates in previous works [6] in related problems was also explained in [5]. The idea is to complexify a real Hamiltonian system and subsequently treat the real part of the complex \mathcal{H} as the Hamiltonian H of the enlarged system with twice the original number of degrees of freedom. By virtue of Cauchy-Riemann condition (for \mathcal{H}) and Hamiltonian equations of motion it is possible to show that both the real part H and the imaginary part G of \mathcal{H} (where $\mathcal{H}=H+\mathrm{i} G$) are separately conserved. This allows one to interpret G as a first class constraint (FCC) (see section 2 for a brief discussion on the constraint analysis as formulated by Dirac [7]) and in particular $G=0$ ensures the reality of the energy value. This FCC is present in all such complexified systems and the gauge symmetry induced by this FCC [7] is termed as Crypto-gauge symmetry [4]. In [4], it has been shown that specific features of some complexified models (analyzed in terms of real variables) can be matched with their $P T$-symmetric counterpart in the complex plane.

It is important to emphasize that the work of Smilga [4] is restricted to one space dimension only and it naturally evokes the question of its application in higher dimensions. The present work specifically deals with this problem where we study the complexified or 'Crypto' harmonic oscillator (CHO) in two and three dimensions. The one-dimensional Crypto-oscillator was discussed by Smilga in [4]. As we will discuss at length in this paper, even this straightforward generalization reveals a number of interesting features that demand further study of higher dimensional Crypto-gauge systems in a model-independent way. It is worth mentioning that not much work has been done in $P T$-symmetric models in higher dimensions. Indeed, it will be very fruitful if our way of studying Crypto-gauge invariant models can reproduce results that are comparable with previously studied higher dimensional $P T$-symmetric models [8].

In this paper we will concentrate on additional spatial symmetries (such as rotational symmetries) that naturally occur in more than one dimensions. Following the same philosophy of demanding reality of energy values, which is a conserved quantity, one can also demand the reality of other conserved quantities, such as angular momentum, (as we have done here). This induces more constraints in the system and the subsequent analysis will require the Hamiltonian constraint analysis [7]. Our study will reveal a rich and interesting constraint structure for the higher dimensional models.

There seems to be still another way of interpreting the appearance of Crypto-gauge symmetry in this complexification process. In quantum field theories in the area of high energy physics there are several systematic procedures [9] of introducing gauge invariance (by way of FCCs) where the original model is embedded in a prescribed way in an extended phase space. The equivalence of the extended gauge invariant model with the original model is established in the so-called unitary gauge where the extended model reduces to the original one. Here, it is essential for the extended model to have the requisite number of FCCs that can account for the additional degrees of freedom in the enlarged phase space.

It is quite intriguing that the same phenomenon is repeated in the Crypto-gauge symmetric models although this was not quite apparent in the one-dimensional examples studied in [4]. In one dimension, complexification introduces one extra degree of freedom and there appears the FCC $G \approx 0$ to remove it. In fact, examples of unitary gauge choices have been given in [4]. On the other hand, in the higher dimensions that we consider (albeit in the CHO model) a larger number of degrees of freedom are introduced in the complexification process but quite surprisingly the number and nature of the additional constraints that appear from other conserved quantities (such as angular momentum) are just right to account for the extra variables. Indeed, it will be very interesting to establish this property in higher dimensions in a model-independent way.

2. Dirac constraint analysis-a brief digression

In the coordinate space formulation, starting from a Lagrangian $L\left(q_{i}, \dot{q}_{i}\right)$ of a dynamical system, constraints (if present) are revealed from the definition of the canonically conjugate momenta $p_{i}=(\partial L) /\left(\partial \dot{q}_{i}\right)$. In the Hamiltonian scheme [7], constraints are a set of relations $\varphi_{a}\left(q_{i}, p_{i}\right) \approx 0$, without any time derivative. The weak equality stresses the fact that the constraints can be put to zero $\varphi_{a}=0$ as a strong equality only after all the relevant Poisson brackets are computed. Other constraints can appear from the requirement that the constraints are preserved in time and a complete set of constraints should obey

$$
\left\{\varphi_{a}, H\right\}=0+\lambda_{a} \varphi_{a}
$$

Here, φ_{a} are a set of independent constraints and

$$
H\left(p_{i}, q_{i}\right)=p_{j} \dot{q}_{j}-L+\lambda_{a} \varphi_{a}
$$

is the canonical Hamiltonian modulo constraints. The Poisson bracket is computed by using the basic algebra

$$
\left\{q_{i}, p_{j}\right\}=\delta_{i j}, \quad\left\{q_{i}, q_{j}\right\}=\left\{p_{i}, p_{j}\right\}=0
$$

Once the full set of constraints are obtained Dirac introduced the very important classification of constraints. If in the full set φ_{a} there are constraints F_{α} that (Poisson) commute with all the constraints,

$$
\left\{F_{\alpha}, \varphi_{a}\right\}=0+\lambda_{\alpha a b} \varphi_{b}
$$

the set F_{α} is termed as first class constraints (FCC). The rest of the constraints H_{β} that do not commute with all the constraints are termed as second class constraints (SCC). In practical terms this means that the constraint matrix, with $\left\{\varphi_{a}, \varphi_{b}\right\}$ as matrix elements, will be degenerate if there are FCCs in the system and it will be invertible if only SCCs are present.

The FCCs are responsible for local gauge invariances in the system and they are related to the generators of local gauge transformations. On the other hand, the SCCs induce a modification in the symplectic structure and one has to replace the basic Poisson Brackets by a new set of brackets, known as Dirac brackets. Also it is important to point out that the presence of FCCs indicate that there are redundant variables that are not physical degrees of freedom and one is allowed to choose additional constraints, known as gauge fixing conditions, that can remove these trivial variables. Note that a system of FCCs together with proper gauge fixing constraints becomes a set of SCCs.

An SCC can be used to eliminate one degree of freedom in phase space. On the other hand, one FCC, together with an associated gauge fixing constraint, constitutes a pair of SCCs and accounts for two degrees of freedom in phase space. In this way, one can determine the true degrees of freedom of a constrained system.

The idea is that in quantizing a system with second class constraints one needs to elevate the Dirac brackets (and not the Poisson brackets) to quantum commutators.

In the present work we will only invoke the idea of the classification of constraints and explicit construction of the Dirac brackets will be left for a future publication.

3. Two-dimensional CHO: classical analysis

The CHO Hamiltonian is

$$
\begin{equation*}
\mathcal{H}\left(\pi_{i}, z_{i}\right)=\frac{\pi_{i}^{2}+z_{i}^{2}}{2} \tag{1}
\end{equation*}
$$

where $i=1,2$. Clearly, this is just the two-dimensional extension of the construction of Smilga [4]. Following [4] we express the complex phase space variables $\left(\pi_{i} ; z_{i}\right)$ in terms of real phase space variables $z_{i}=x_{i}+\mathrm{i} y_{i}, \pi_{i}=p_{i}-\mathrm{i} q_{i}$. The above phase space is canonical with the only non-vanishing Poisson brackets being $\left\{x_{i}, p_{j}\right\}=\delta_{i j} ;\left\{y_{i}, q_{j}\right\}=\delta_{i j}$. The complex Hamiltonian \mathcal{H} in (1) now reads

$$
\begin{align*}
& \mathcal{H}\left(\pi_{i}, z_{i}\right)=H\left(p_{i}, q_{i} ; x_{i}, y_{i}\right)+\mathrm{i} G\left(p_{i}, q_{i} ; x_{i}, y_{i}\right) \\
& H=\frac{1}{2}\left[\left({p_{i}^{2}}^{2}+x_{i}^{2}\right)-\left(q_{i}^{2}+y_{i}^{2}\right)\right], \quad G=-p_{i} q_{i}+x_{i} y_{i} \tag{2}
\end{align*}
$$

In order to restrict the classical Hamiltonian to the real space, we impose the constraint $G \approx 0$ where the weak equality is interpreted in the sense of Dirac [7]. As noted in [4], G (Poisson) commutes with $H:\{G, H\}=0$ that can be checked explicitly. So far everything appears to be a straightforward extension of [4] but now comes the new elements.

In two dimensions one can moot the idea of a complex angular momentum and demand its reality. The complex angular momentum is defined as

$$
\begin{align*}
& \mathcal{L}=z_{1} \pi_{2}-z_{2} \pi_{1} \equiv L_{R}+\mathrm{i} L_{G} \tag{3}\\
& L_{R}=\epsilon_{i j}\left(x_{i} p_{j}+y_{i} q_{j}\right), \quad L_{G}=-\epsilon_{i j}\left(x_{i} q_{j}-y_{i} p_{j}\right) \tag{4}
\end{align*}
$$

For real values of angular momentum we impose $L_{G} \approx 0$. The angular momentum L_{R} is a conserved quantity $\left\{L_{R}, H\right\}=0$.

The two-dimensional CHO has two constraints $G \approx 0, L_{G} \approx 0$ ([4] had one) and so we will require a full constraint analysis [7], as discussed in section 2. First of all one has to obtain the full set of linearly independent constraints such that the constraint system is stable under time translation. In the present case this is ensured by noting

$$
\begin{equation*}
\{G, H\} \approx 0, \quad\left\{L_{G}, H\right\} \approx 0 \tag{5}
\end{equation*}
$$

Next comes the classification of the constraints. In our system,

$$
\begin{equation*}
\left\{L_{G}, G\right\} \approx 0 \tag{6}
\end{equation*}
$$

This shows that both the constraints are FCC in nature (of the type F_{α} mentioned in section 2).

There are two generic features that are common in the one-dimensional model [4] and its higher dimensional extensions studied here.

First one is the fact that the constraint that is generated from the reality of angular momentum commutes with H. This property remains valid in the three-dimensional extension as well and this type of additional constraints did not appear in one-dimensional case [4]. This property might be a particular feature of the CHO model. Remember that for the constraint G that originated from the complex Hamiltonian, one can exploit the CauchyRiemann conditions to show $\{G, H\}=0$ in a model-independent way. It will be interesting to see if our result has a deeper significance.

The second point is related to the degrees of freedom count. Note that in [4] in one dimension one extra degree of freedom was introduced due to complexification and it can be removed by the single FCC G. This is because the additional two variables (y, q) in phase space can be removed by the FCC G and a suitable gauge choice (the so-called unitary gauge). Now in two dimensions, the extension is by two degree of freedom (four variables ($y_{i}, q_{i} ; i=1,2$) in phase space but now there are two FCCs G and L_{G} (along with two gauge choices) to account for them). Hence effectively the number of degrees of freedom has not changed in the process of complexification. This property is preserved in three dimensions as well but in a more interesting and non-trivial way.

A constrained Lagrangian for the CHO is

$$
\begin{equation*}
L=x_{i} \dot{p}_{i}+y_{i} \dot{q}_{i}-H+\lambda_{1} G+\lambda_{2} L_{G}, \tag{7}
\end{equation*}
$$

with λ_{1}, λ_{2} being Lagrange multipliers. From the Euler-Lagrange equations of motion we obtain

$$
\begin{equation*}
p_{i}=\dot{x}_{i}-\lambda_{1} q_{i}-\lambda_{2} \epsilon_{i j} y_{j}, \quad q_{i}=-\dot{y}_{i}+\lambda_{1} p_{i}-\lambda_{2} \epsilon_{i j} x_{j} \tag{8}
\end{equation*}
$$

Substituting the momenta into (7) and finally eliminating the multipliers λ_{1}, λ_{2} we can get the coordinate space Lagrangian. One can check that it is invariant under the gauge transformations generated by G and L_{G}.

In the present work we will not try to develop the full dynamics of the model but will only show that the model admits closed trajectories for positive energies and angular momentum, in a partially gauge fixed setup (similar to [4]) with $\lambda_{1}=\lambda_{2}=0$. Let us consider the simplest possible bounded solution,

$$
\begin{equation*}
x_{i}=A_{i} \cos (t)+B_{i} \sin (t) ; \quad y_{i}=R_{i} \cos (t)+Q_{i} \sin (t) \tag{9}
\end{equation*}
$$

where $A_{i}, B_{i}, R_{i}, Q_{i}$ are time independent parameters. Substituting (9) into the previously computed expressions for the Hamiltonian H, angular momentum L_{R} and constraints G, L_{G}, we obtain

$$
\begin{align*}
& H=\frac{1}{2}\left[\left(A^{2}+B^{2}\right)-\left(R^{2}+Q^{2}\right)\right] ; \quad G=A R+B Q \tag{10}\\
& L_{R}=\epsilon_{i j}\left(A_{i} B_{j}+Q_{i} R_{j}\right) ; \quad L_{G}=\epsilon_{i j}\left(A_{i} Q_{j}-B_{i} R_{j}\right) .
\end{align*}
$$

Now consider the following choices of A, B, Q, R for which both the constraints vanish and H and L_{R} take different forms:
(i) $A_{i}=-\epsilon_{i j} B_{j} ; Q_{i}=-\epsilon_{i j} R_{j} \Rightarrow H \equiv E=A^{2}-R^{2}, L_{R}=-\left(A^{2}+R^{2}\right)$,
(ii) $A_{i}=B_{i}=0 \Rightarrow E=-\frac{1}{2}\left(R^{2}+Q^{2}\right), L_{R}=\epsilon_{i j} Q_{i} R_{j}$,
(iii) $A_{i}= \pm \epsilon_{i j} R_{j} ; B_{i}= \pm \epsilon_{i j} Q_{j} \Rightarrow E=L_{R}=0$,
(iv) $A_{i}=\epsilon_{i j} B_{j} ; Q_{i}=\epsilon_{i j} R_{j} \Rightarrow E=A^{2}-R^{2}, L_{R}=A^{2}+R^{2}$,
(v) $R_{i}=Q_{i}=0 \Rightarrow E=\frac{1}{2}\left(A^{2}+B^{2}\right), L_{R}=\epsilon_{i j} Q_{i} R_{j}$.

Let us now comment on these alternative possibilities: clearly the choices (i) and (ii) are not interesting because for classical systems, energy or angular momentum can not be negative. Also (iii) does not represent a dynamical system since both energy and angular momentum vanish. The choices (iv) and (v) are physically relevant. Obviously, (v) represents the conventional harmonic oscillator. Let us focus our attention on (iv). Here the energy E is not positive definite but angular momentum L_{R} is positive definite. Turning this around, we might demand both positive definite values for E and L_{R} and in that case we can plot the constant (positive) energy and angular surfaces to get an idea of the particle trajectory. Clearly, a fixed positive energy can give rise to unbounded motion in the form of open surfaces whereas a fixed angular momentum will lead to a closed surface (in fact a hyper-sphere). Hence their intersection will yield a closed trajectory. This is shown in the figure where both the surfaces are plotted with the coordinate $y_{2}=0$.

4. Three-dimensional CHO: classical analysis

The three-dimensional CHO is studied in the same way as before where equations (1), (2) for the complex Hamiltonian remain structurally identical with $i=1,2,3 . \mathcal{H}$ will be real provided $G \approx 0$ is treated as a constraint.

Proceeding in the same way as we did in the two-dimensional counterpart in section 3 we define the i th component of the angular momentum as

$$
\begin{equation*}
L^{i}=L_{R}^{i}+i L_{G}^{i} ; \quad L_{R}^{i}=\epsilon^{i j k}\left(x^{j} p^{k}+y^{j} q^{k}\right), \quad L_{G}^{i}=\epsilon^{i j k}\left(y^{j} p^{k}-x^{j} q^{k}\right) \tag{11}
\end{equation*}
$$

We impose further constraints $L_{G}^{i} \approx 0$ to keep the reality of angular momenta intact. From $\left\{L_{R}^{i}, H\right\}=0,\left\{L_{R}^{i}, L_{R}^{j}\right\}=\epsilon^{i j k} L_{R}^{k}$ we find L_{R} is conserved and preserve $S O(3)$ algebra.

Next we carry out the constraint analysis with the four constraints, $G \approx 0, L_{G}^{i} \approx 0, i=$ $1,2,3$. From $\{G, H\}=0,\left\{L_{G}^{i}, H\right\}=0$, we find that the system of constraints is stable against time translation. Next the constraint algebra $\left\{L_{G}^{i}, G\right\}=0,\left\{L_{G}^{i}, L_{G}^{j}\right\}=-\epsilon^{i j k} L_{R}^{k}$ indicates that G is an FCC (of the type F_{α}) but also there are SCCs (of the type H_{β}). Since there cannot be an odd number of SCCs ${ }^{3}$ (three in the present case) there has to be another FCC. Taking help from the rest of the algebra $\left\{L_{R}^{i}, G\right\}=0,\left\{L_{G}^{i}, L_{R}^{j}\right\}=\epsilon^{i j k} L_{G}^{k}$ we find that the following combination, $W \equiv L_{R}^{i} L_{G}^{i} \approx 0$, constitutes the other FCC. Hence, we conclude that the system has two FCCs $G \approx 0, W \approx 0$ (of type F_{α} in section 2) and two SCCs which we can be chosen as L_{G}^{1}, L_{G}^{2} (of type H_{β} of section 2) with the non-vanishing bracket

$$
\begin{equation*}
\left\{L_{G}^{1}, L_{G}^{2}\right\}=-L_{R}^{3} \tag{12}
\end{equation*}
$$

Let us consider the degrees of freedom count in the presence of the constraints. In three dimensions we have introduced three additional degrees of freedom and they can be accounted for by the two FCCs (each removing one degree of freedom) and the pair of SCC (the latter together removes one degree of freedom). In this sense, the parity is once again restored between the number of degrees of freedom in the original system and the constrained 'Crypto' system.

Although we will not pursue the quantization of the three-dimensional CHO in the present work we note that the closed algebra of L_{R}^{i}, L_{G}^{j} is nothing but the group algebra of $S L(2, C)$. We also stress that in the oscillator basis were L_{R}^{3} is diagonal, the SCC structure $\left\{L_{G}^{1}, L_{G}^{2}\right\}=-L_{R}^{3}$ is not operator valued and so the quantization should not be problematic. Interestingly, for the zero angular momentum state $\left\{L_{G}^{1}, L_{G}^{2}\right\}=0$ meaning that there are no SCC for this particular state. But even with four FCCs the degrees of freedom still matches because remember that the zero angular momentum state will depend only on the planar distance and not on the angle.

5. Two-dimensional CHO: quantum analysis

In this section we discuss the quantization of the planar CHO. Following the procedure one adopts in the case of a normal HO, we define two sets of lowering operators as

$$
\begin{equation*}
a_{i}=\frac{1}{\sqrt{2}}\left(p_{i}-\mathrm{i} x_{i}\right), \quad b_{i}=\frac{1}{\sqrt{2}}\left(q_{i}-\mathrm{i} y_{i}\right), \tag{13}
\end{equation*}
$$

with the non-zero commutator, $\left[a_{i}, a_{j}^{\dagger}\right]=\left[b_{i}, b_{j}^{\dagger}\right]=\delta_{i j}$. Next we define the Schwinger operators

$$
\begin{array}{ll}
A_{1}=\frac{1}{\sqrt{ } 2}\left(a_{1}+\mathrm{i} a_{2}\right) ; & A_{2}=\frac{1}{\sqrt{ } 2}\left(a_{1}-\mathrm{i} a_{2}\right) \\
B_{1}=\frac{1}{\sqrt{ } 2}\left(b_{1}+\mathrm{i} b_{2}\right) ; & B_{2}=\frac{1}{\sqrt{ } 2}\left(b_{1}-\mathrm{i} b_{2}\right)
\end{array}
$$

The only non-zero commutators are $\left[A_{i}, A_{j}^{\dagger}\right]=\left[B_{i}, B_{j}^{\dagger}\right]=\delta_{i j}$. The advantage of using A_{i}, B_{i} is that both the Hamiltonian H as well as the single component of angular momentum L_{R} are diagonal when expressed in terms of A_{i}, B_{i}. Hence we find

[^0]$H=N_{A_{1}}+N_{A_{2}}-N_{B_{1}}-N_{B_{2}}, \quad L_{R}=N_{A_{2}}+N_{B_{2}}-N_{A_{1}}-N_{B_{1}}$,
$G=-\left(A_{1} B_{2}+A_{2} B_{1}+A_{1}{ }^{\dagger} B_{2}^{\dagger}+A_{2}^{\dagger} B_{1}^{\dagger}\right), \quad L_{G}=A_{1} B_{2}-A_{2} B_{1}+A_{1}{ }^{\dagger} B_{2}{ }^{\dagger}-A_{2}^{\dagger} B_{1}{ }^{\dagger}$
where the number operators are defined as $N_{A_{1}}=A_{1}{ }^{\dagger} A_{1}$, etc. Since H and L_{R} commute, it is possible to choose a common eigen-basis of both H and L_{R}. We choose the common eigen-basis as $\left|n_{A_{1}}, n_{B_{1}} ; n_{A_{2}}, n_{B_{2}}\right\rangle$ with the following action of the Schwinger operators on them:
\[

$$
\begin{align*}
& A_{1}\left|n_{A_{1}}, n_{B_{1}} ; n_{A_{2}}, n_{B_{2}}\right\rangle=\sqrt{n_{A_{1}}}\left|n_{A_{1}}-1, n_{B_{1}} ; n_{A_{2}}, n_{B_{2}}\right\rangle \\
& A_{1}^{\dagger}\left|n_{A_{1}}, n_{B_{1}} ; n_{A_{2}}, n_{B_{2}}\right\rangle=\sqrt{n_{A_{1}}+1}\left|n_{A_{1}}+1, n_{B_{1}} ; n_{A_{2}}, n_{B_{2}}\right\rangle . \tag{17}
\end{align*}
$$
\]

The actions of the rest of the operators $A_{2}, A_{2}{ }^{\dagger}, B_{1}, B_{2}, B_{1}{ }^{\dagger}, B_{2}{ }^{\dagger}$ are similar. Eigenvalues for H and L_{R} are given as

$$
\begin{align*}
& H\left|n_{A_{1}}, n_{B_{1}} ; n_{A_{2}}, n_{B_{2}}\right\rangle=\left(n_{A_{1}}+n_{A_{2}}-n_{B_{1}}-n_{B_{2}}\right)\left|n_{A_{1}}, n_{B_{1}} ; n_{A_{2}}, n_{B_{2}}\right\rangle \\
& L_{R}\left|n_{A_{1}}, n_{B_{1}} ; n_{A_{2}}, n_{B_{2}}\right\rangle=\left(n_{A_{2}}+n_{B_{2}}-n_{A_{1}}-n_{B_{1}}\right)\left|n_{A_{1}}, n_{B_{1}} ; n_{A_{2}}, n_{B_{2}}\right\rangle . \tag{18}
\end{align*}
$$

Any state can be written as a linear combination in the above basis,

$$
\begin{equation*}
|\Psi\rangle=\sum_{n_{A_{1}}, \ldots, n_{B_{2}}=0}^{\infty} C_{n_{A_{1}}, \ldots, n_{B_{2}}}\left|n_{A_{1}}, n_{B_{1}} ; n_{A_{2}}, n_{B_{2}}\right\rangle . \tag{19}
\end{equation*}
$$

Now comes the role of the constraints. Since they are FCCs we follow the Dirac formalism [7] and pick the physical sector by demanding that the FCCs kill the physical states $(F C C)\left|\Psi^{p h}\right\rangle=0$ which in the present case means

$$
\begin{equation*}
G\left|\Psi^{p h}\right\rangle=0 ; \quad L_{G}\left|\Psi^{p h}\right\rangle=0 \tag{20}
\end{equation*}
$$

However, in the present problem, it is more convenient to impose the linear combinations of FCCs,

$$
\begin{equation*}
\left(G+L_{G}\right)\left|\Psi^{p h}\right\rangle=0 ; \quad\left(G-L_{G}\right)\left|\Psi^{p h}\right\rangle=0 \tag{21}
\end{equation*}
$$

Considering the first one $\left(G+L_{G}\right)\left|\Psi^{p h}\right\rangle=0$, we find

$$
\begin{align*}
& \sum_{n_{A_{1}}, \ldots, n_{B_{2}}=0}^{\infty} C_{n_{A_{1}}, \ldots, n_{B_{2}}}\left[\sqrt{n_{A_{2}} n_{B_{1}}}\left|n_{A_{1}}, n_{B_{1}}-1 ; n_{A_{2}}-1, n_{B_{2}}\right\rangle\right. \\
&\left.\quad+\sqrt{\left(n_{A_{2}}+1\right)\left(n_{B_{1}}+1\right)}\left|n_{A_{1}}, n_{B_{1}}+1 ; n_{A_{2}}+1, n_{B_{2}}\right\rangle\right]=0 \tag{22}
\end{align*}
$$

To find the states that satisfy (22) with arbitrary energy m (including zero) and arbitrary values of angular momentum n (including zero), we use (18) and obtain the conditions

$$
\begin{equation*}
n_{A_{1}}+n_{A_{2}}=m+n_{B_{1}}+n_{B_{2}}, \quad n_{A_{2}}-n_{A_{1}}=n+n_{B_{1}}-n_{B_{2}}, \tag{23}
\end{equation*}
$$

where $m=-\infty$ to $+\infty$ and $n=0,1,2,3, \ldots$ The numbers n_{A}, n_{B} are the eigenvalues of the corresponding number operators N_{A}, N_{B}, etc. Solving the above two equations we get

$$
\begin{equation*}
n_{B_{1}}=n_{A_{2}}-\frac{m}{2}-\frac{n}{2}, \quad n_{B_{2}}=n_{A_{1}}-\frac{m}{2}+\frac{n}{2} . \tag{24}
\end{equation*}
$$

Substituting these into (22) we have

$$
\begin{align*}
\sum_{n_{A_{1}}, n_{A_{2}}=0}^{\infty} C_{n_{A_{1}}, n_{A_{2}}} & {\left[\sqrt{\left(n_{A_{2}}-\frac{m}{2}-\frac{n}{2}\right) n_{A_{2}}}\left|n_{A_{1}}, n_{A_{2}}-\frac{m}{2}-\frac{n}{2}-1 ; n_{A_{2}}-1, n_{A_{1}}+\frac{n}{2}-\frac{m}{2}\right\rangle\right.} \\
& \left.+\sqrt{\left(n_{A_{2}}+1\right)\left(n_{A_{2}}-\frac{m}{2}-\frac{n}{2}+1\right)} \right\rvert\, n_{A_{1}}, n_{A_{2}}-\frac{m}{2}-\frac{n}{2}+1 \\
& \left.\left.n_{A_{2}}+1, n_{A_{1}}+\frac{n}{2}-\frac{m}{2}\right)\right] \\
& =0 \tag{25}
\end{align*}
$$

Replacing $n_{A_{1}}$ by n_{1} and $n_{A_{2}}$ by n_{2} and then substituting n_{2} by $n_{2}-2$ into the second term of the above relation we get

$$
\begin{align*}
\sum_{n_{1}, n_{2}=0}^{\infty} C_{n_{1}, n_{2}} & \sqrt{\left(n_{2}-\frac{m}{2}-\frac{n}{2}\right) n_{2}}\left|n_{1}, n_{2}-\frac{m}{2}-\frac{n}{2}-1 ; n_{2}-1, n_{1}-\frac{m}{2}+\frac{n}{2}\right\rangle \\
& \left.+\sum_{n_{1}=0, n_{2}=2}^{\infty} C_{n_{1}, n_{2}-2} \sqrt{\left(n_{2}-\frac{m}{2}-\frac{n}{2}-1\right)\left(n_{2}-1\right)} \right\rvert\, n_{1}, n_{2}-\frac{m}{2}-\frac{n}{2}-1 \\
& \left.\left.n_{2}-1, n_{1}-\frac{m}{2}+\frac{n}{2}\right)\right] \\
& =0 \tag{26}
\end{align*}
$$

Putting $C_{n_{1},-2}=C_{n_{1},-1}=0$ we can rewrite the above as

$$
\begin{gather*}
\sum_{n_{1}, n_{2}=0}^{\infty}\left[C_{n_{1}, n_{2}} \sqrt{\left(n_{2}-\frac{m}{2}-\frac{n}{2}\right) n_{2}}+C_{n_{1}, n_{2}-2} \sqrt{\left(n_{2}-\frac{m}{2}-\frac{n}{2}-1\right)\left(n_{2}-1\right)}\right] \\
\left|n_{1}, n_{2}-\frac{m}{2}-\frac{n}{2}-1 ; n_{2}-1, n_{1}-\frac{m}{2}+\frac{n}{2}\right\rangle \\
=0 \tag{27}
\end{gather*}
$$

Since the basis vectors are linearly independent, the coefficient within the third bracket must vanish for each basis vectors and hence we have the following recursion relation:

$$
\begin{equation*}
C_{n_{1}, n_{2}}=-\sqrt{\frac{\left(n_{2}-\frac{m}{2}-\frac{n}{2}-1\right)\left(n_{2}-1\right)}{\left(n_{2}-\frac{m}{2}-\frac{n}{2}\right) n_{2}}} C_{n_{1}, n_{2}-2} \tag{28}
\end{equation*}
$$

where $n_{1}=0,1,2,3, \ldots$ and $n_{2}=2,3,4, \ldots$ since $C_{n_{1},-2}=C_{n_{1},-1}=0$. Using the above recursion relation one can show

$$
\begin{align*}
& C_{i, 2 k}=(-1)^{k} \sqrt{\frac{\left(2 k-1-\frac{m}{2}-\frac{n}{2}\right)!!(2 k-1)!!}{\left(2 k-\frac{m}{2}-\frac{n}{2}\right)!!(2 k)!!}} C_{i, 0} \\
& C_{i, 2 k+1}=(-1)^{k} \sqrt{\frac{\left(2 k-\frac{m}{2}-\frac{n}{2}\right)!!(2 k)!!}{\left(2 k+1-\frac{m}{2}-\frac{n}{2}\right)!!(2 k+1)!!}} C_{i, 1} \tag{29}
\end{align*}
$$

where $i=0,1,2, \ldots, k=1,2,3, \ldots$ and

$$
\begin{align*}
& (2 k)!!=2.4 .6 \ldots(2 k-2)(2 k) \\
& (2 k-1)!!=1.3 .5 \ldots(2 k-3)(2 k-1) \\
& \left(2 k-1-\frac{m}{2}-\frac{n}{2}\right)!!=\left(1-\frac{m}{2}-\frac{n}{2}\right)\left(3-\frac{m}{2}-\frac{n}{2}\right) \ldots \tag{30}\\
& \left(2 k-3-\frac{m}{2}-\frac{n}{2}\right)\left(2 k-1-\frac{m}{2}-\frac{n}{2}\right) .
\end{align*}
$$

Therefore, by imposing one of the FCCs we narrow down the physical sector to the following state:

$$
\begin{align*}
\left|\Psi_{m, n}^{p h}\right\rangle= & \sum_{i=0, k=1}^{\infty}(-1)^{k}\left[\sqrt{\frac{\left(2 k-1-\frac{m}{2}-\frac{n}{2}\right)!!(2 k-1)!!}{\left(2 k-\frac{m}{2}-\frac{n}{2}\right)!!(2 k)!!}} C_{i, 0}\left|i, 2 k-\frac{m}{2}-\frac{n}{2} ; 2 k, i-\frac{m}{2}+\frac{n}{2}\right\rangle\right. \\
& \left.+\sqrt{\frac{\left(2 k-\frac{m}{2}-\frac{n}{2}\right)!!(2 k)!!}{\left(2 k+1-\frac{m}{2}-\frac{n}{2}\right)!!(2 k+1)!!}} C_{i, 1}\left|i, 2 k+1-\frac{m}{2}-\frac{n}{2} ; 2 k+1, i-\frac{m}{2}+\frac{n}{2}\right\rangle\right] . \tag{31}
\end{align*}
$$

Finally, we further restrict the sector to the correct physical one by imposing the other FCC,

$$
\begin{equation*}
\left(G-L_{G}\right)\left|\Psi_{m, n}^{p h}\right\rangle=-2\left(A_{1} B_{2}+A_{1}^{\dagger} B_{2}^{\dagger}\right)\left|\Psi_{m, n}^{p h}\right\rangle=0 \tag{32}
\end{equation*}
$$

Another relation between the parameters follows:

$$
\begin{align*}
\sum_{i=0, k=1}^{\infty}(-1)^{k}[& \sqrt{\frac{\left(2 k-1-\frac{m}{2}-\frac{n}{2}\right)!!(2 k-1)!!}{\left(2 k-\frac{m}{2}-\frac{n}{2}\right)!!(2 k)!!}} \\
& \times C_{i, 0}\left\{\sqrt{i\left(i-\frac{m}{2}+\frac{n}{2}\right)}\left|i-1,2 k-\frac{m}{2}-\frac{n}{2} ; 2 k, i-\frac{m}{2}+\frac{n}{2}-1\right\rangle\right. \\
& \left.\left.\left.+\sqrt{(i+1)\left(i+1-\frac{m}{2}+\frac{n}{2}\right)} \right\rvert\, i+1,2 k-\frac{m}{2}-\frac{n}{2} ; 2 k, i-\frac{m}{2}+\frac{n}{2}+1\right)\right\} \\
& \times \sqrt{\frac{\left(2 k-\frac{m}{2}-\frac{n}{2}\right)!!(2 k)!!}{\left(2 k+1-\frac{m}{2}-\frac{n}{2}\right)!!(2 k+1)!!}} \\
& \times \sqrt{\left(i, 1\left|\sqrt{i\left(i-\frac{m}{2}+\frac{n}{2}\right)}\right| i-1,2 k+1-\frac{m}{2}-\frac{n}{2} ; 2 k+1, i-\frac{m}{2}+\frac{n}{2}-1\right\rangle} \\
= & 0 .
\end{align*}
$$

Explicitly writing the above equation for the sum over $i=0$ to ∞ one can show

$$
\begin{align*}
& C_{\mu \nu}=0, \\
& C_{2 r, 0}=(-1)^{r} \sqrt{\frac{(2 r-1)!!\left(2 r-1-\frac{m}{2}+\frac{n}{2}\right)!!}{(2 r)!!\left(2 r-\frac{m}{2}+\frac{n}{2}\right)!!}} C_{0,0}, \tag{34}\\
& C_{2 r, 1}=(-1)^{r} \sqrt{\frac{(2 r-1)!!\left(2 r-1-\frac{m}{2}+\frac{n}{2}\right)!!}{(2 r)!!\left(2 r-\frac{m}{2}+\frac{n}{2}\right)!!}} C_{0,1},
\end{align*}
$$

where $\mu=1,3,5,7, \ldots, v=0,1$ and $r=1,2,3,4, \ldots$. So, the final form of the physical state for arbitrary energy m and angular momentum n is

$$
\begin{align*}
\left|\Psi_{m, n}^{p h}\right\rangle=\sum_{r, k=1}^{\infty}(& -1)^{k+r} \sqrt{\frac{(2 r-1)!!\left(2 r-1-\frac{m}{2}+\frac{n}{2}\right)!!}{(2 r)!!\left(2 r-\frac{m}{2}+\frac{n}{2}\right)!!}} \\
& \times\left[\sqrt{\frac{\left(2 k-1-\frac{m}{2}-\frac{n}{2}\right)!!(2 k-1)!!}{\left(2 k-\frac{m}{2}-\frac{n}{2}\right)!!(2 k)!!}} C_{0,0}\left|2 r, 2 k-\frac{m}{2}-\frac{n}{2} ; 2 k, 2 r-\frac{m}{2}+\frac{n}{2}\right\rangle\right. \\
& +\sqrt{\frac{\left(2 k-\frac{m}{2}-\frac{n}{2}\right)!!(2 k)!!}{\left(2 k+1-\frac{m}{2}-\frac{n}{2}\right)!!(2 k+1)!!}} C_{0,1} \\
& \left.\times\left|2 r, 2 k+1-\frac{m}{2}-\frac{n}{2} ; 2 k+1,2 r-\frac{m}{2}+\frac{n}{2}\right\rangle\right] \tag{35}
\end{align*}
$$

With this we conclude the quantization of the two-dimensional Crypto-oscillator.
It is also straightforward to recover the quantum version of one-dimensional CHO that was discussed in [4]. In one dimension, $x_{2}, p_{2}, y_{2}, q_{2}$ are absent from the set (13) which means that in (14) $A_{1}=A_{2} \equiv A, B_{1}=B_{2} \equiv B$. Putting this back into $(16,16)$, we obtain
$H=2\left(N_{A}-N_{B}\right), \quad G=-2\left(A B+A^{\dagger} B^{\dagger}\right), \quad L_{R}=0, \quad L_{G}=0$,
which is nothing but the model studied in [4].

6. Summary and outlook

In this paper we have generalized the Crypto harmonic oscillator model, proposed by Smilga [4], to higher (two and three) dimensions. After complexification, the energy is restricted to the real sector by demanding that the imaginary part of the energy vanishes. This introduces a (Hamiltonian) constraint in the theory [4]. In higher dimensions there are other physical dynamical variables (such as angular momentum that is considered here) besides the energy and it is only natural to restrict them to the real sector as well. This brings in additional constraints and a formal constraint analysis [7] reveals interesting features. Also we have quantized the two-dimensional Crypto harmonic oscillator in the present paper.

An interesting problem is to ascertain to what extent the new features in the constraint structure revealed here in the higher dimensional extension are model independent. If these features turn out to be generic, then this formalism can be still another alternative way of introducing gauge symmetry via phase space extension. In fact, we are now studying the Crypto version of the oscillator with a position-dependent effective mass and there also these features persist. These results will be reported elsewhere.

The other problem is obviously to apply this idea of Crypto-gauge invariance, as adapted in our work in higher space dimensions, to more complicated models and to compare the results with the analog higher dimensional $P T$-symmetric models.

Acknowledgment

It is a pleasure to thank Rabin Banerjee and Pinaki Roy for discussions.

References

[1] McGarev D C 1962 J. Math. Anal. Appl. 4366
For a recent discussion see Curtright T and Mezincescu L 2005 Preprint quant-phys/0507015
[2] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 805243
For a recent review see Bender C M 2007 Preprint hep-th/0703096
[3] Bagchi B and Quesne C 2002 Phys. Lett. A 301173
Mostafazadeh A 2002 J. Math. Phys. 43205
Bagchi B and Choudhury R R 2000 J. Phys. A: Math. Gen. 33 L1
Sinha A, Levai G and Roy P 2004 Phys. Lett. A 32278
Zonjil M 2005 J. Math. Phys. 46062109
Scholtz F G and Geyer H B 2006 J. Phys. A: Math. Gen. 3910189
Banerjee R and Mukherjee P 2002 J. Phys. A: Math. Gen. 355591 (Preprint quant-ph/0108055)
[4] Smilga A V 2007 Preprint 0706.4064 (J. Phys. A: Math. Theor. at press)
[5] Mostafazadeh A 2006 Phys. Lett. A 357177
[6] Xavier A L Jr and de Aguiar M A M 1996 Ann. Phys., NY 252458
Kauschal R S and Kosch H J 2000 Phys. Lett. A 27647
Kauschal R S and Singh S 2001 Ann. Phys., NY 288253
[7] Dirac P A M 1964 Lectures on Quantum Mechanics (New York: Yeshiva University Press)
[8] Levai G 2007 J. Phys. A: Math. Theor. 40 F273-80
Chand F et al 2007 J. Phys. A: Math. Theor. 40 10171-82
[9] Stuckelberg E C G 1957 Helv. Phys. Acta 30209
Batalin I A and Fradkin E S 1987 Nucl. Phys. B 279514
Batalin I A and Tyutin I V 1991 Int. J. Mod. Phys. A 63255
Banerjee N, Banerjee R and Ghosh S 1994 Nucl. Phys. B 427257

[^0]: ${ }^{3}$ Remember that the constraint matrix for SCCs is non-singular.

