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Abstract
We study complexified harmonic oscillator models in two and three dimensions.
Our work is a generalization of the work of Smilga (2007 Preprint 0706.4064
(J. Phys. A: Math. Theor. at press)) who initiated the study of these Crypto-
gauge invariant models that can be related to PT -symmetric models. We show
that rotational symmetry in higher spatial dimensions naturally introduces more
constraints (in contrast to Smilga (2007 Preprint 0706.4064 (J. Phys. A: Math.
Theor. at press)) where one deals with a single constraint) with a much richer
constraint structure. Some common as well as distinct features in the study
of the same Crypto-oscillator in different dimensions are revealed. We also
quantize the two dimensional Crypto-oscillator.

PACS numbers: 03.65.Ca, 03.65.Ge

1. Introduction

It has been known for quite sometime [1] that there are quantum mechanical models with
specific complex terms in the Hamiltonian that admit real spectra and unitary evolution.
Later the seminal paper of Bender and Boettcher [2] attributed this intriguing and useful
property to the combined PT - (parity and time reversal) symmetry of the system and more
PT -symmetric models were constructed that had the above feature. Subsequently, there has
been a lot of activity [3] in the study of different aspects of PT -symmetric models. These
models are referred as ‘Crypto’-Hermitian models by Smilga [4]. In [4] Smilga has also
provided an alternative explanation to this behavior (of having real energy eigenvalues for a
complex Hamiltonian): Crypto-gauge invariance. However, in an important earlier work by
Mostafazadeh [5], it was observed in a general context that the real part of the Hamiltonian can
generate the dynamics in a real phase space and that the imaginary part of the Hamiltonian,
treated as a constraint, can generate symmetry transformations. The usage of certain class of
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coordinates in previous works [6] in related problems was also explained in [5]. The idea is
to complexify a real Hamiltonian system and subsequently treat the real part of the complex
H as the Hamiltonian H of the enlarged system with twice the original number of degrees
of freedom. By virtue of Cauchy–Riemann condition (for H) and Hamiltonian equations
of motion it is possible to show that both the real part H and the imaginary part G of H
(where H = H + iG) are separately conserved. This allows one to interpret G as a first class
constraint (FCC) (see section 2 for a brief discussion on the constraint analysis as formulated
by Dirac [7]) and in particular G = 0 ensures the reality of the energy value. This FCC is
present in all such complexified systems and the gauge symmetry induced by this FCC [7]
is termed as Crypto-gauge symmetry [4]. In [4], it has been shown that specific features of
some complexified models (analyzed in terms of real variables) can be matched with their
PT -symmetric counterpart in the complex plane.

It is important to emphasize that the work of Smilga [4] is restricted to one space
dimension only and it naturally evokes the question of its application in higher dimensions.
The present work specifically deals with this problem where we study the complexified or
‘Crypto’ harmonic oscillator (CHO) in two and three dimensions. The one-dimensional
Crypto-oscillator was discussed by Smilga in [4]. As we will discuss at length in this paper,
even this straightforward generalization reveals a number of interesting features that demand
further study of higher dimensional Crypto-gauge systems in a model-independent way. It
is worth mentioning that not much work has been done in PT -symmetric models in higher
dimensions. Indeed, it will be very fruitful if our way of studying Crypto-gauge invariant
models can reproduce results that are comparable with previously studied higher dimensional
PT -symmetric models [8].

In this paper we will concentrate on additional spatial symmetries (such as rotational
symmetries) that naturally occur in more than one dimensions. Following the same philosophy
of demanding reality of energy values, which is a conserved quantity, one can also demand
the reality of other conserved quantities, such as angular momentum, (as we have done here).
This induces more constraints in the system and the subsequent analysis will require the
Hamiltonian constraint analysis [7]. Our study will reveal a rich and interesting constraint
structure for the higher dimensional models.

There seems to be still another way of interpreting the appearance of Crypto-gauge
symmetry in this complexification process. In quantum field theories in the area of high
energy physics there are several systematic procedures [9] of introducing gauge invariance
(by way of FCCs) where the original model is embedded in a prescribed way in an extended
phase space. The equivalence of the extended gauge invariant model with the original model
is established in the so-called unitary gauge where the extended model reduces to the original
one. Here, it is essential for the extended model to have the requisite number of FCCs that
can account for the additional degrees of freedom in the enlarged phase space.

It is quite intriguing that the same phenomenon is repeated in the Crypto-gauge symmetric
models although this was not quite apparent in the one-dimensional examples studied in [4].
In one dimension, complexification introduces one extra degree of freedom and there appears
the FCC G ≈ 0 to remove it. In fact, examples of unitary gauge choices have been given
in [4]. On the other hand, in the higher dimensions that we consider (albeit in the CHO
model) a larger number of degrees of freedom are introduced in the complexification process
but quite surprisingly the number and nature of the additional constraints that appear from
other conserved quantities (such as angular momentum) are just right to account for the extra
variables. Indeed, it will be very interesting to establish this property in higher dimensions in
a model-independent way.
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2. Dirac constraint analysis—a brief digression

In the coordinate space formulation, starting from a Lagrangian L(qi, q̇i) of a dynamical
system, constraints (if present) are revealed from the definition of the canonically conjugate
momenta pi = (∂L)/(∂q̇i). In the Hamiltonian scheme [7], constraints are a set of relations
ϕa(qi, pi) ≈ 0, without any time derivative. The weak equality stresses the fact that the
constraints can be put to zero ϕa = 0 as a strong equality only after all the relevant Poisson
brackets are computed. Other constraints can appear from the requirement that the constraints
are preserved in time and a complete set of constraints should obey

{ϕa,H } = 0 + λaϕa.

Here, ϕa are a set of independent constraints and

H(pi, qi) = pj q̇j − L + λaϕa

is the canonical Hamiltonian modulo constraints. The Poisson bracket is computed by using
the basic algebra

{qi, pj } = δij , {qi, qj } = {pi, pj } = 0.

Once the full set of constraints are obtained Dirac introduced the very important
classification of constraints. If in the full set ϕa there are constraints Fα that (Poisson)
commute with all the constraints,

{Fα, ϕa} = 0 + λαabϕb,

the set Fα is termed as first class constraints (FCC). The rest of the constraints Hβ that do not
commute with all the constraints are termed as second class constraints (SCC). In practical
terms this means that the constraint matrix, with {ϕa, ϕb} as matrix elements, will be degenerate
if there are FCCs in the system and it will be invertible if only SCCs are present.

The FCCs are responsible for local gauge invariances in the system and they are related
to the generators of local gauge transformations. On the other hand, the SCCs induce a
modification in the symplectic structure and one has to replace the basic Poisson Brackets by a
new set of brackets, known as Dirac brackets. Also it is important to point out that the presence
of FCCs indicate that there are redundant variables that are not physical degrees of freedom
and one is allowed to choose additional constraints, known as gauge fixing conditions, that
can remove these trivial variables. Note that a system of FCCs together with proper gauge
fixing constraints becomes a set of SCCs.

An SCC can be used to eliminate one degree of freedom in phase space. On the other
hand, one FCC, together with an associated gauge fixing constraint, constitutes a pair of SCCs
and accounts for two degrees of freedom in phase space. In this way, one can determine the
true degrees of freedom of a constrained system.

The idea is that in quantizing a system with second class constraints one needs to elevate
the Dirac brackets (and not the Poisson brackets) to quantum commutators.

In the present work we will only invoke the idea of the classification of constraints and
explicit construction of the Dirac brackets will be left for a future publication.

3. Two-dimensional CHO: classical analysis

The CHO Hamiltonian is

H(πi, zi) = πi
2 + zi

2

2
(1)
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where i = 1, 2. Clearly, this is just the two-dimensional extension of the construction of
Smilga [4]. Following [4] we express the complex phase space variables (πi; zi) in terms of
real phase space variables zi = xi +iyi, πi = pi − iqi . The above phase space is canonical with
the only non-vanishing Poisson brackets being {xi, pj } = δij ; {yi, qj } = δij . The complex
Hamiltonian H in (1) now reads

H(πi, zi) = H(pi, qi; xi, yi) + iG(pi, qi; xi, yi),

H = 1
2

[(
pi

2 + xi
2
) − (

qi
2 + yi

2
)]

, G = −piqi + xiyi .
(2)

In order to restrict the classical Hamiltonian to the real space, we impose the constraint G ≈ 0
where the weak equality is interpreted in the sense of Dirac [7]. As noted in [4], G (Poisson)
commutes with H: {G,H } = 0 that can be checked explicitly. So far everything appears to be
a straightforward extension of [4] but now comes the new elements.

In two dimensions one can moot the idea of a complex angular momentum and demand
its reality. The complex angular momentum is defined as

L = z1π2 − z2π1 ≡ LR + iLG, (3)

LR = εij (xipj + yiqj ), LG = −εij (xiqj − yipj ). (4)

For real values of angular momentum we impose LG ≈ 0. The angular momentum LR is a
conserved quantity {LR,H } = 0.

The two-dimensional CHO has two constraints G ≈ 0, LG ≈ 0 ([4] had one) and so we
will require a full constraint analysis [7], as discussed in section 2. First of all one has to
obtain the full set of linearly independent constraints such that the constraint system is stable
under time translation. In the present case this is ensured by noting

{G,H } ≈ 0, {LG,H } ≈ 0. (5)

Next comes the classification of the constraints. In our system,

{LG,G} ≈ 0. (6)

This shows that both the constraints are FCC in nature (of the type Fα mentioned in
section 2).

There are two generic features that are common in the one-dimensional model [4] and its
higher dimensional extensions studied here.

First one is the fact that the constraint that is generated from the reality of angular
momentum commutes with H. This property remains valid in the three-dimensional extension
as well and this type of additional constraints did not appear in one-dimensional case [4].
This property might be a particular feature of the CHO model. Remember that for the
constraint G that originated from the complex Hamiltonian, one can exploit the Cauchy–
Riemann conditions to show {G,H } = 0 in a model-independent way. It will be interesting
to see if our result has a deeper significance.

The second point is related to the degrees of freedom count. Note that in [4] in one
dimension one extra degree of freedom was introduced due to complexification and it can be
removed by the single FCC G. This is because the additional two variables (y, q) in phase space
can be removed by the FCC G and a suitable gauge choice (the so-called unitary gauge). Now
in two dimensions, the extension is by two degree of freedom (four variables (yi, qi; i = 1, 2)

in phase space but now there are two FCCs G and LG (along with two gauge choices) to
account for them). Hence effectively the number of degrees of freedom has not changed in
the process of complexification. This property is preserved in three dimensions as well but in
a more interesting and non-trivial way.

4
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A constrained Lagrangian for the CHO is

L = xiṗi + yi q̇i − H + λ1G + λ2LG, (7)

with λ1, λ2 being Lagrange multipliers. From the Euler–Lagrange equations of motion we
obtain

pi = ẋi − λ1qi − λ2εij yj , qi = −ẏi + λ1pi − λ2εij xj . (8)

Substituting the momenta into (7) and finally eliminating the multipliers λ1, λ2 we can get the
coordinate space Lagrangian. One can check that it is invariant under the gauge transformations
generated by G and LG.

In the present work we will not try to develop the full dynamics of the model but will only
show that the model admits closed trajectories for positive energies and angular momentum,
in a partially gauge fixed setup (similar to [4]) with λ1 = λ2 = 0. Let us consider the simplest
possible bounded solution,

xi = Ai cos(t) + Bi sin(t); yi = Ri cos(t) + Qi sin(t), (9)

where Ai, Bi, Ri,Qi are time independent parameters. Substituting (9) into the previously
computed expressions for the Hamiltonian H, angular momentum LR and constraints G,LG,
we obtain

H = 1
2 [(A2 + B2) − (R2 + Q2)]; G = AR + BQ

LR = εij (AiBj + QiRj ); LG = εij (AiQj − BiRj ).
(10)

Now consider the following choices of A,B,Q,R for which both the constraints vanish and
H and LR take different forms:

(i) Ai = −εijBj ;Qi = −εijRj ⇒ H ≡ E = A2 − R2, LR = −(A2 + R2),
(ii) Ai = Bi = 0 ⇒ E = − 1

2 (R2 + Q2), LR = εijQiRj ,
(iii) Ai = ±εijRj ;Bi = ±εijQj ⇒ E = LR = 0,
(iv) Ai = εijBj ;Qi = εijRj ⇒ E = A2 − R2, LR = A2 + R2,
(v) Ri = Qi = 0 ⇒ E = 1

2 (A2 + B2), LR = εijQiRj .

Let us now comment on these alternative possibilities: clearly the choices (i) and (ii)
are not interesting because for classical systems, energy or angular momentum can not be
negative. Also (iii) does not represent a dynamical system since both energy and angular
momentum vanish. The choices (iv) and (v) are physically relevant. Obviously, (v) represents
the conventional harmonic oscillator. Let us focus our attention on (iv). Here the energy E
is not positive definite but angular momentum LR is positive definite. Turning this around,
we might demand both positive definite values for E and LR and in that case we can plot the
constant (positive) energy and angular surfaces to get an idea of the particle trajectory. Clearly,
a fixed positive energy can give rise to unbounded motion in the form of open surfaces whereas
a fixed angular momentum will lead to a closed surface (in fact a hyper-sphere). Hence their
intersection will yield a closed trajectory. This is shown in the figure where both the surfaces
are plotted with the coordinate y2 = 0.

4. Three-dimensional CHO: classical analysis

The three-dimensional CHO is studied in the same way as before where equations (1), (2)
for the complex Hamiltonian remain structurally identical with i = 1, 2, 3. H will be real
provided G ≈ 0 is treated as a constraint.

5
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Proceeding in the same way as we did in the two-dimensional counterpart in section 3 we
define the ith component of the angular momentum as

Li = Li
R + iLi

G; Li
R = εijk(xjpk + yjqk), Li

G = εijk(yjpk − xjqk). (11)

We impose further constraints Li
G ≈ 0 to keep the reality of angular momenta intact. From{

Li
R,H

} = 0,
{
Li

R, L
j

R

} = εijkLk
R we find LR is conserved and preserve SO(3) algebra.

Next we carry out the constraint analysis with the four constraints, G ≈ 0, Li
G ≈ 0, i =

1, 2, 3. From {G,H } = 0,
{
Li

G,H
} = 0, we find that the system of constraints is stable

against time translation. Next the constraint algebra
{
Li

G,G
} = 0,

{
Li

G,L
j

G

} = −εijkLk
R

indicates that G is an FCC (of the type Fα) but also there are SCCs (of the type Hβ). Since
there cannot be an odd number of SCCs3 (three in the present case) there has to be another
FCC. Taking help from the rest of the algebra

{
Li

R,G
} = 0,

{
Li

G,L
j

R

} = εijkLk
G we find that

the following combination, W ≡ Li
RLi

G ≈ 0, constitutes the other FCC. Hence, we conclude
that the system has two FCCs G ≈ 0,W ≈ 0 (of type Fα in section 2) and two SCCs which
we can be chosen as L1

G,L2
G (of type Hβ of section 2) with the non-vanishing bracket{

L1
G,L2

G

} = −L3
R. (12)

Let us consider the degrees of freedom count in the presence of the constraints. In three
dimensions we have introduced three additional degrees of freedom and they can be accounted
for by the two FCCs (each removing one degree of freedom) and the pair of SCC (the latter
together removes one degree of freedom). In this sense, the parity is once again restored
between the number of degrees of freedom in the original system and the constrained ‘Crypto’
system.

Although we will not pursue the quantization of the three-dimensional CHO in the
present work we note that the closed algebra of Li

R, L
j

G is nothing but the group algebra
of SL(2, C). We also stress that in the oscillator basis were L3

R is diagonal, the SCC structure{
L1

G,L2
G

} = −L3
R is not operator valued and so the quantization should not be problematic.

Interestingly, for the zero angular momentum state
{
L1

G,L2
G

} = 0 meaning that there are no
SCC for this particular state. But even with four FCCs the degrees of freedom still matches
because remember that the zero angular momentum state will depend only on the planar
distance and not on the angle.

5. Two-dimensional CHO: quantum analysis

In this section we discuss the quantization of the planar CHO. Following the procedure one
adopts in the case of a normal HO, we define two sets of lowering operators as

ai = 1√
2 (pi − ixi), bi = 1√

2 (qi − iyi), (13)

with the non-zero commutator, [ai, aj
†] = [bi, bj

†] = δij . Next we define the Schwinger
operators

A1 = 1√
2 (a1 + ia2); A2 = 1√

2 (a1 − ia2)

B1 = 1√
2 (b1 + ib2); B2 = 1√

2 (b1 − ib2).

The only non-zero commutators are
[
Ai,Aj

†] = [
Bi, Bj

†] = δij . The advantage of using
Ai, Bi is that both the Hamiltonian H as well as the single component of angular momentum
LR are diagonal when expressed in terms of Ai, Bi . Hence we find

3 Remember that the constraint matrix for SCCs is non-singular.
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H = NA1 + NA2 − NB1 − NB2 , LR = NA2 + NB2 − NA1 − NB1 , (15)

G = −(
A1B2 + A2B1 + A1

†B2
† + A2

†B1
†), LG = A1B2 − A2B1 + A1

†B2
† − A2

†B1
†

(16)

where the number operators are defined as NA1 = A1
†A1, etc. Since H and LR commute,

it is possible to choose a common eigen-basis of both H and LR . We choose the common
eigen-basis as |nA1 , nB1; nA2 , nB2〉 with the following action of the Schwinger operators on
them:

A1

∣∣nA1 , nB1; nA2 , nB2

〉 = √
nA1

∣∣nA1 − 1, nB1; nA2 , nB2

〉
A1

†∣∣nA1 , nB1; nA2 , nB2

〉 = √
nA1 + 1

∣∣nA1 + 1, nB1; nA2 , nB2

〉
.

(17)

The actions of the rest of the operators A2, A2
†, B1, B2, B1

†, B2
† are similar. Eigenvalues for

H and LR are given as

H
∣∣nA1 , nB1; nA2 , nB2

〉 = (
nA1 + nA2 − nB1 − nB2

)∣∣nA1 , nB1; nA2 , nB2

〉
LR

∣∣nA1 , nB1; nA2 , nB2

〉 = (
nA2 + nB2 − nA1 − nB1

)∣∣nA1 , nB1; nA2 , nB2

〉
.

(18)

Any state can be written as a linear combination in the above basis,

|	〉 =
∞∑

nA1 ,...,nB2 =0

CnA1 ,...,nB2

∣∣nA1 , nB1; nA2 , nB2

〉
. (19)

Now comes the role of the constraints. Since they are FCCs we follow the Dirac formalism
[7] and pick the physical sector by demanding that the FCCs kill the physical states
(FCC)|	ph〉 = 0 which in the present case means

G|	ph〉 = 0; LG|	ph〉 = 0. (20)

However, in the present problem, it is more convenient to impose the linear combinations of
FCCs,

(G + LG)|	ph〉 = 0; (G − LG)|	ph〉 = 0. (21)

Considering the first one (G + LG)|	ph〉 = 0, we find

∞∑
nA1 ,...,nB2 =0

CnA1 ,...,nB2

[√
nA2nB1

∣∣nA1 , nB1 − 1; nA2 − 1, nB2

〉

+
√

(nA2 + 1)
(
nB1 + 1

)∣∣nA1 , nB1 + 1; nA2 + 1, nB2

〉] = 0. (22)

To find the states that satisfy (22) with arbitrary energy m (including zero) and arbitrary values
of angular momentum n (including zero), we use (18) and obtain the conditions

nA1 + nA2 = m + nB1 + nB2 , nA2 − nA1 = n + nB1 − nB2 , (23)

where m = −∞ to +∞ and n = 0, 1, 2, 3, . . .. The numbers nA, nB are the eigenvalues of
the corresponding number operators NA,NB , etc. Solving the above two equations we get

nB1 = nA2 − m

2
− n

2
, nB2 = nA1 − m

2
+

n

2
. (24)

7
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Substituting these into (22) we have

∞∑
nA1 ,nA2 =0

CnA1 ,nA2

[√(
nA2 − m

2
− n

2

)
nA2

∣∣∣∣nA1 , nA2 − m

2
− n

2
− 1; nA2 − 1, nA1 +

n

2
− m

2

〉

+

√
(nA2 + 1)

(
nA2 − m

2
− n

2
+ 1

) ∣∣∣∣nA1 , nA2 − m

2
− n

2
+ 1;

nA2 + 1, nA1 +
n

2
− m

2

〉]

= 0 (25)

Replacing nA1 by n1 and nA2 by n2 and then substituting n2 by n2 − 2 into the second term of
the above relation we get

∞∑
n1,n2=0

Cn1,n2

√(
n2 − m

2
− n

2

)
n2

∣∣∣∣n1, n2 − m

2
− n

2
− 1; n2 − 1, n1 − m

2
+

n

2

〉

+
∞∑

n1=0,n2=2

Cn1,n2−2

√(
n2 − m

2
− n

2
− 1

)
(n2 − 1)

∣∣∣∣n1, n2 − m

2
− n

2
− 1;

n2 − 1, n1 − m

2
+

n

2

〉]
= 0. (26)

Putting Cn1,−2 = Cn1,−1 = 0 we can rewrite the above as

∞∑
n1,n2=0

[
Cn1,n2

√(
n2 − m

2
− n

2

)
n2 + Cn1,n2−2

√(
n2 − m

2
− n

2
− 1

)
(n2 − 1)

]
∣∣∣∣n1, n2 − m

2
− n

2
− 1; n2 − 1, n1 − m

2
+

n

2

〉

= 0. (27)

Since the basis vectors are linearly independent, the coefficient within the third bracket must
vanish for each basis vectors and hence we have the following recursion relation:

Cn1,n2 = −
√(

n2 − m
2 − n

2 − 1
)
(n2 − 1)(

n2 − m
2 − n

2

)
n2

Cn1,n2−2 (28)

where n1 = 0, 1, 2, 3, . . . and n2 = 2, 3, 4, . . . since Cn1,−2 = Cn1,−1 = 0. Using the above
recursion relation one can show

Ci,2k = (−1)k

√(
2k − 1 − m

2 − n
2

)
!!(2k − 1)!!(

2k − m
2 − n

2

)
!!(2k)!!

Ci,0;

Ci,2k+1 = (−1)k

√ (
2k − m

2 − n
2

)
!!(2k)!!(

2k + 1 − m
2 − n

2

)
!!(2k + 1)!!

Ci,1

(29)

8



J. Phys. A: Math. Theor. 41 (2008) 065306 S Ghosh and B R Majhi

where i = 0, 1, 2, . . . , k = 1, 2, 3, . . . and
(2k)!! = 2.4.6 . . . (2k − 2)(2k);
(2k − 1)!! = 1.3.5 . . . (2k − 3)(2k − 1);(

2k − 1 − m

2
− n

2

)
!! =

(
1 − m

2
− n

2

)(
3 − m

2
− n

2

)
. . .(

2k − 3 − m

2
− n

2

)(
2k − 1 − m

2
− n

2

)
.

(30)

Therefore, by imposing one of the FCCs we narrow down the physical sector to the following
state:∣∣	ph

m,n

〉 = ∞∑
i=0,k=1

(−1)k

[√(
2k − 1 − m

2 − n
2

)
!!(2k − 1)!!(

2k − m
2 − n

2

)
!!(2k)!!

Ci,0

∣∣∣∣i, 2k − m

2
− n

2
; 2k, i − m

2
+

n

2

〉

+

√ (
2k − m

2 − n
2

)
!!(2k)!!(

2k + 1 − m
2 − n

2

)
!!(2k + 1)!!

Ci,1

∣∣∣∣i, 2k + 1 − m

2
− n

2
; 2k + 1, i − m

2
+

n

2

〉]
.

(31)

Finally, we further restrict the sector to the correct physical one by imposing the other FCC,

(G − LG)
∣∣	ph

m,n

〉 = −2
(
A1B2 + A

†
1B

†
2

)∣∣	ph
m,n

〉 = 0. (32)

Another relation between the parameters follows:
∞∑

i=0,k=1

(−1)k

[√(
2k − 1 − m

2 − n
2

)
!!(2k − 1)!!(

2k − m
2 − n

2

)
!!(2k)!!

×Ci,0

{√
i

(
i − m

2
+

n

2

)∣∣∣∣i − 1, 2k − m

2
− n

2
; 2k, i − m

2
+

n

2
− 1

〉

+

√
(i + 1)

(
i + 1 − m

2
+

n

2

)∣∣∣∣i + 1, 2k − m

2
− n

2
; 2k, i − m

2
+

n

2
+ 1

〉}

+

√ (
2k − m

2 − n
2

)
!!(2k)!!(

2k + 1 − m
2 − n

2

)
!!(2k + 1)!!

×Ci,1

{√
i

(
i − m

2
+

n

2

)∣∣∣∣i − 1, 2k + 1 − m

2
− n

2
; 2k + 1, i − m

2
+

n

2
− 1

〉

+

√
(i + 1)

(
i − m

2
+

n

2
+ 1

)∣∣∣∣i + 1, 2k + 1 − m

2
− n

2
; 2k + 1, i − m

2
+

n

2
+ 1

〉}]

= 0. (33)

Explicitly writing the above equation for the sum over i = 0 to ∞ one can show

Cµν = 0,

C2r,0 = (−1)r

√
(2r − 1)!!

(
2r − 1 − m

2 + n
2

)
!!

(2r)!!(2r − m
2 + n

2 )!!
C0,0,

C2r,1 = (−1)r

√
(2r − 1)!!

(
2r − 1 − m

2 + n
2

)
!!

(2r)!!
(
2r − m

2 + n
2

)
!!

C0,1,

(34)
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where µ = 1, 3, 5, 7, . . . , ν = 0, 1 and r = 1, 2, 3, 4, . . .. So, the final form of the physical
state for arbitrary energy m and angular momentum n is

∣∣	ph
m,n

〉 =
∞∑

r,k=1

(−1)k+r

√
(2r − 1)!!

(
2r − 1 − m

2 + n
2

)
!!

(2r)!!
(
2r − m

2 + n
2

)
!!

×
[√(

2k − 1 − m
2 − n

2

)
!!(2k − 1)!!(

2k − m
2 − n

2

)
!!(2k)!!

C0,0

∣∣∣∣2r, 2k − m

2
− n

2
; 2k, 2r − m

2
+

n

2

〉

+

√ (
2k − m

2 − n
2

)
!!(2k)!!(

2k + 1 − m
2 − n

2

)
!!(2k + 1)!!

C0,1

×
∣∣∣∣2r, 2k + 1 − m

2
− n

2
; 2k + 1, 2r − m

2
+

n

2

〉]
. (35)

With this we conclude the quantization of the two-dimensional Crypto-oscillator.
It is also straightforward to recover the quantum version of one-dimensional CHO that

was discussed in [4]. In one dimension, x2, p2, y2, q2 are absent from the set (13) which means
that in (14) A1 = A2 ≡ A,B1 = B2 ≡ B. Putting this back into (16,16), we obtain

H = 2(NA − NB), G = −2(AB + A†B†), LR = 0, LG = 0, (36)

which is nothing but the model studied in [4].

6. Summary and outlook

In this paper we have generalized the Crypto harmonic oscillator model, proposed by Smilga
[4], to higher (two and three) dimensions. After complexification, the energy is restricted to
the real sector by demanding that the imaginary part of the energy vanishes. This introduces
a (Hamiltonian) constraint in the theory [4]. In higher dimensions there are other physical
dynamical variables (such as angular momentum that is considered here) besides the energy
and it is only natural to restrict them to the real sector as well. This brings in additional
constraints and a formal constraint analysis [7] reveals interesting features. Also we have
quantized the two-dimensional Crypto harmonic oscillator in the present paper.

An interesting problem is to ascertain to what extent the new features in the constraint
structure revealed here in the higher dimensional extension are model independent. If these
features turn out to be generic, then this formalism can be still another alternative way of
introducing gauge symmetry via phase space extension. In fact, we are now studying the
Crypto version of the oscillator with a position-dependent effective mass and there also these
features persist. These results will be reported elsewhere.

The other problem is obviously to apply this idea of Crypto-gauge invariance, as adapted
in our work in higher space dimensions, to more complicated models and to compare the
results with the analog higher dimensional PT -symmetric models.
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